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ABSTRACT

The accuracy of financial time series forecasts often rely on the model precision and the availability of actual observations

for forecast evaluations. This study aimed to tackle these issues in order to obtain a suitable asymmetric time-varying
volatility model that outperformed in the forecast evaluations based on interday and intraday data. The model precision
was examined based on the most appropriate time-varying volatility representation under the autoregressive conditional
heteroscedascity framework. For forecast precision, the evaluations were conducted under three loss functions using the
volatility proxies and realized volatility. The empirical studies were implemented on two major financial markets and the
estimated results are applied in quantifying their market risks. Empirical results indicated that Zakoian model provided
the best in-sample forecasts whereas DGE on the other hand indicated better out-of-sample forecasts. For the type of
volatility proxy selection, the implementation of intraday data in the latent volatility indicated significant improvement
in all the time horizon forecasts.
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ABSTRAK

Ketepatan ramalan siri masa kewangan sering bergantung kepada ketepatan dan kewujudan cerapan sebenar dalam
penilaian ramalan. Kajian ini bertujuan menangani isu-isu tersebut untuk mendapat model kemeruapan berubah masa
asimetri yang dapat memberi prestasi yang baik berdasarkan data antara dan dalaman harian. Ketepatan model diperiksa
berdasarkan pewakilan kemeruapan berubah masa paling sesuai dengan rangka kerja autoregresi heteroskedastisiti
bersyarat. Untuk ketepatan peramalan, penilaian peramalan dijalankan berdasarkan tiga fungsi kerugian dengan proksi
kemeruapan dan kemeruapan realisasi. Kajian empirik dilaksanakan pada dua pasaran saham utama dan keputusan
penganggaran digunakan dalam mengkuantitikan risiko pasaran masing-masing. Keputusan empirik menunjukkan
model asimetri Zakoian memberi keputusan penilaian peramalan dalam sampel yang terbaik manakala model DGE pula
menandakan peramalan luar sampel yang paling tepat. Untuk pemilihan proksi kemeruapan, penggunaan data dalaman
harian sebagai kemeruapan sebenar menunjukkan pembaikan yang signifikan dalam peramalan semua ufuk masa.

Kata kunci: Kemeruapan dinamik; kemeruapan realisasi; model ARCH; risiko pasaran

INTRODUCTION the asymmetric news impact (Black 1976) in the return

In financial time series analysis, volatility forecast is volatility. Sometimes this impact is known as leverage

an important topic due to its influential impact in asset
pricing modelling, portfolio investment decision as well
as risk management development. The introduction
of autoregressive conditional heteroscedastic(ARCH)
models has successfully captured the clustering volatility
especially during the high volatility period in worldwide
financial markets. The early volatility representations are
dominant by Bollerslev (1986) and Taylor (1986) families
of ARCH models. The former family suggested the shocks
to variance persist in the form of squared residuals whereas
the latter family proposed the shocks in term of absolute
residual.

In the further development of ARCH model, Nelson’s
(1991) later proposed an exponential ARCH to capture

effect where the market volatility tended to rise more in
response to bad news as compared to the released of good
news. This important stylized fact has been extended in
Bollerslev’s framework by Glosten et al. (1993) (GIR
henceforth) using a dummy variable to capture the
impact of bad news. On the other hand, Zakoian (1990)
introduced this asymmetric effect using the Taylor’s
specification. However, both of these specifications
have fixed the volatility representation based on the
Gaussian assumption where the expected square return
is approximated to variance and the expected absolute
return is estimated to the standard deviation. Since the
worldwide financial markets are deviated from normal
distribution with kurtosis exceeded three and non-zero
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skewness, the aforementioned assumption might not be
suitable anymore. Knowing the presence of other potential
power form of volatility, Ding, Granger and Engle (DGE
henceforth) suggested the asymmetric power ARCH (Ding
et al. 1993) with flexible power transformation. This
model endogenously estimated the power transformation
rather than fixed arbitrarily in GIR and Zakoian models.

Besides the correct model specification, the
availability of ‘actual’ volatility is also an important
factor to ensure good forecast performance. In most of
the studies, the unobservable actual volatilities often
represented by proxies such as square return or absolute
return based on the interday data. Consequently, some
studies (Jorion 1996; Schwet 1990) reported that the
forecast using GARCH model only managed to explain
less than 5% to the proxy volatility. The absence of good
approximation of actual volatility is the main reason for
the poor forecast results. With the fast growing of data
base system in financial markets, the high frequency
data (intraday data) become available in most of the
major financial markets. With the high frequency data
(minutely), it is possible to obtain a better approximation
of actual volatility. Anderson and Bollerslev (1998)
pointed out a better estimation of realized daily volatility
can be obtained by summing the 288 5 min squared
intraday returns for the 24 h foreign exchange market.
This approach is the approximation of a continuous time
diffusion process for most of the financial asset prices
time series. In addition, it is noted by Ebens (1999)
and Anderson et al. (1999) that the squared return is an
unbiased estimator but at the same time, a noisy estimator.
In the stock market, the intraday returns are obtained by
summing the trading hours with the absence of overnight
trading. Further information of realized volatility can
be obtained from Andersen et al. (2001) and Barndorff-
Nielsen and Shephard (2002).

The preceding discussions thus provided that the
factors underlying the role of superior forecast performance
are correct model specification and good estimators of
actual volatility. This is an interesting research issue
and it is worth exploring on how the DGE, GJR and
Zakoian compete in the model specification and forecast
performance. In order to do so, this paper attempted
to address these issues in two major financial markets,
the S&P500 and the FTSE100. The model selections are
based on Akiake, Schwert and Hannan-Quinn information
criteria. In order to avoid biasness, both the interday and
intraday proxies are used in the forecast evaluations.

This paper is organized as follows: the next section
describes the data source in term of inter- and intra-day. This
is followed by a discussion on the model specifications,
estimation, diagnostic and forecast evaluation. This
followed by a presentation on the empirical results and
application of the estimated results. The last section
contains the conclusion of this study.

DATA SOURCE

The empirical data are obtained from two major global
stock markets, the S&P500 and FTSE100. The S&P500
is a free-float capitalization-weighted index introduced
in year 1957 which traded under the NYSE Euronext and
NASDAQ OMX. The S&P Index committees selected the
500 active large-cap common stocks that represented the
industries in the United States economy. FTSE100 index
was established in year 1984 with 100 most wealthy
companies listed on the London Stock Exchange (LSE).
These companies contributed approximately 80% of the
market capitalization of the LSE. The empirical indices
started from January 1998 until December 2008 with a
total of 2767 and 2777 observations for S&P500 and
FTSE100, respectively. A total of five months daily trading
data (102 observations for both markets) are reserved for
forecast evaluations. The most common financial data are
based on the interday closing prices where daily returns
are subsequently calculated. The percentage continuously
compounded interday return is defined as

=100(In P,—In P, ). (1)

REALIZED VOLATILITY

The rapid development of recent information and
communication technology (ICT) has promoted the use
of high frequency data to facilitate a more accurate
estimation and forecasting analysis. This referred to
intraday data with N observations in one day which are
normally recorded in the interval of multiple minute.
The percentage of continuously compounded return is
defined as:

R ,=100(n P, ), )

wherea=1, ..., Nand ¢t =1, ..., T. In other words, each
day (7) consists of N recorded trading activities. For this
study, the durations for trading hours are from 9:30 to 16:00
(S&P500) and 8:00 to 16:30 (FTSE100) with N, =390

S&PSOO
and Ny qop00=510, respectlvely These time series are

assumed to have E[R J= E [R R ] 0 and finite
E [Rip R, ] For model free proxy of Volatlhty, the daily

Vr.s.p.q
squared compounded returns are:

N N N
=S R, +23 SRR, (a=b). 3)

The second term indicated the autocovariances which
acted as the noise component in the realized volatility.
This item vamshes if E [R R, ] = 0 and reduced

Vres,prq
to E [ ] E ? 07 nw Which is an unbiased estimator



(Anderson et al. 1999) of the daily population variance or
latent volatility. The variance of realized volatility can be
expressed as:

under the 2normality assumption where N(0,0;/N),

1% [ﬁf ] =22 which indicated that the variance of realized
o N

volatility reduced at the rate of N.

METHODS

Let R be a general univariate asset return which is serially
uncorrelated but dependent in the ARCH specification.
For a given information set I, available at time -1, the
conditional mean of r, is defined as:

E(rrl It—l) = Et—l(rt) = lur’ (5)

with the innovation process a, = r,— u, with the conditional
variance Var(r|1_) = Var, (a}) = o} . In financial time
series, the conditional mean often captured by a stationary
ARMA(m,n) model under the non-vector form:

1=+ S+ 30, ©)
i=1 i=1

An ARCH model is also frequently represented by a
regression model in the form of 7 = x, /8 + a, where x,"is a
column vector. The corresponding unconditional variance
can be expressed as Var(a(0)) = E(a(0)) = 0,(0) where
E(a)=0and E(aa,) =0 for all k=h. Further, the conditional
variance begun with the relationship a, = 0z, where for
standardized process of z, E(z|1 ) = 0 and Var(z|I_)
= 1 for all t. Now, consider an asymmetric power DGE
GARCH(1,1) model with the following specifications:

o)=a +alkla ) +pB 00, (7

where k (a, ) = |a, | —va,, and d is the flexible volatility
transformation parameter. Specifically, when the conditional
volatility representation restricted to 0 = 1 (conditional
standard deviation) and ¢ = 2 (conditional variance), the
model changed to Zakovian and GJR models with leverage
effect (dummy variable) as follows:

2 2
=0, +oa, +vyd %0 (8)

GJR: o}

Zakoian: o, =a,+oa, +vd _a B o, , ©)
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1if a_ <0
where d_| = {0 if a0
asymmetric coefficient initiated with positive sign whereas
DGE and Zakoian started with negative sign. This is to make
sure that the interpretation of news impact is consistent
across the models. For example, y>0 indicated the presence
of leverage effect with additional impact (y) as compared
to good news. From the economic point of view, the
leverage effect can be explained based on the debt-equity
ratio. Market equity values often determined by the stock
price where a drop in stock price would increased the ratio
and consequently increased the risk from the investor
perspectives. Thus negative news has a deeper impact to
future volatility than positive news.

- It is worth noting that the GIR

MAXIMUM LIKELIHOOD ESTIMATION

In the maximum likelihood estimation (MLE), z, normally
follows parametric distribution such as normal, student-t
and generalized error distribution. Under the assumption
of standardized z,~ N(0,1), the log-likelihood function with
density function is given as:

1 : 1a).
f(z,|9,,)=(2n02) exp(—zg’z) is

t

L= X1 (p)=Inf(a)
T-1 o, (2 lwa
+{_ 5 ln(2n)—221n(0t)—2202}, (10)

t=2

where 1 = (a,, o, B,, v, 0) represents the vector of
unknown parameter for conditional dispersion equation
all set at time 7. For large sample size, the unknown
marginal density log f (a,) can be ignored under the
following derivation:

L) :zln fla, ... ala) =221n fla| Q). -

2
_la
20!

Differentiating with respect to the vector parameter
yields:

Apart from the constants, /(1) = —%ln(of)

%_aaa 1

14 oo (12)
m o’

However, the DGE model is computed under the
representation of o, therefore the additional separated
analytical derivatives for conditional dispersion are

2 2 d
90, =_20, 90, and
0 dc° 90

d  d?

2 2 d d
do, __29, [; a;’a' -‘;; 1no?], (13)



1290

where 6 = (a, al,ﬁ 1» V). The vector gradients with respect
to the conditional dispersion parameter can be obtained in
the following equations:

do? dc?
Ta[ = kY (aH )b + Bl 460(11 5
9o’ _ ac?.
oy =(le)kY (at—l )6 lar-1 +B, ay H
do? 5 ac?, 14
e [, (a) K, (a,)]+B, = (14)

A more comprehensive analytic derivatives of DGE
APARCH(p,q) can be found in Laurent (2004) and He
and Terasvirta (1997). In this study, the Gaussian Quasi
Maximum Likelihood (Bollerslev & Wooldridge 1992)
method is used to provide consistent (at least) estimation
under the correct specification as stated earlier even
under the non-normal condition of z. For faster and easier
computation, we have selected the Marquardt (1963)
method where only the outer products of the gradient
vectors are computed in the iterative estimations:

T ag(k) (k) o
n(kﬂ):n(kJJr[ oL, al; —cl) oL, (15)

~ o an' o

where ¢/ is a constant diagonal matrix. This correction
matrix provided better maximum location identification
by following the direction of the gradient vector. Under
the regularity conditions of quasi maximum likelihood
estimation (QMLE), the large number samples asymptotically
normally distributed M following the property:

T (i-n,,.) =N (0,717, (16)

T
whereJ=}1£ralc;2

t=1

sfereel

am an

The QMLE become ordinary MLE if the z, is truly
normally distributed where the J"'1J"' reduced to J*! which
is T M —nm)iN (O,j") under the asymptotic property
of MLE.

However, the non-normality (fat-tail property) of
financial time series is often observed in the worldwide
financial markets. Although normality assumption
ML estimator may fulfil the consistency condition, the
departure from normality on the other hand can cause
inefficient issue in the estimations. Thus, to circumvent the
leptokurtosis ARCH issue, Bollerslev (1987) introduced the
heavy tail standardized student-t with degree of freedom
exceeded 2 in the univariate time series. The student-t
distribution (v) can be written as

2
flz Q) =
fr(o-2 1]

2

—(v+k)
1 .
[ +(v—2>} (17)

The associated log-likelihood function can be
expressed as:

(18)

DIAGNOSTIC AND MODEL SELECTION

For model diagnostic, the Ljung-Box serial correlation and
Engle ARCH tests are used to examine the standardized and
squared standardized residuals under the null hypothesis
that the noise terms are serially uncorrelated or random.
Model selections are based on the Akaike information
criterion (AIC), Schwert information criterion (SIC) and
Hannan-Quinn information criterion (HIC) which evaluated
from the adjusted (penalty function due to additional
number estimated parameters) average log likelihood
function (LT) are selected for the estimation evaluation.
The information criteria can be expressed as:

AIC =—2L%+2kT.
_2L%+2ln(k%.
_2L%+2kln[ln(T)%. (19)

where k is the number of estimated parameters.

SIC

HIC

FORECAST EVALUATION

For out-of-sample one-day-ahead forecasts, each volatility
model is estimated H times based on fix period of T
observations. In forecast evaluations, the mean square error
(MSE), the root mean square error (RMSE) and the mean
absolute (MAE) are calculated as follows:

T+H 2

MSE = — E (actual, - forecast,) .

1=T+1

T R 2
T E (actual, - forecast,) .

t=T+1

RMSE

T+H

1 E |actual, - forecast,| : (20)

t=T+1

MAE

where the actual and forecast represented three forms of
volatility proxies with Ir |, ,* and minutely realized volatility



to avoid the possible biasness in the forecast evaluations.
Finally, the Mincer-Zarnowitz(1969) regression is used to
further evaluate the relationship between the forecast and
actual (proxy) based on the coefficient of determination,
R? as follow:

O v =g + MO} +u

t,actual t, forecast [

2n

Conditioning upon the forecast, the forecast is
unbiased and optimal only if A =0 and A, = 1 knowing that
the conditional mean is zero. The determinant coefficient,
R? indicated the power of predictability of the selected
models with R}, and R}, . More specifically, the R
expressed the proportion (percentage) of the total variation
in the actual values that can be accounted for a linear
relationship with the forecast value.
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EMPIRICAL RESULTS

In order to examine the presence of fat-tailed property,
quantile-quantile plots are conducted for S&P500 and
FTSE100. Figures 1 and 2 indicate both the indices deviated
from a normal distribution (heavier at both tails), however,
fitted better after replacing by a student-t distribution. In
other words, a heavy-tail distribution should be considered
in the model specification. For conditional mean equation
analysis, a moving average MA(1) model is capable of
adjusting the serial correlation in the S&P500 while an
ARMA(1,1) is needed for FTSE100. According to Miller et al.
(1994), similar correction can be done using autoregressive
model.
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ESTIMATION RESULT

For conditional volatility, the coefficients that directly
governed the behaviour of the dynamic volatility modelling
can be elaborated as follows:

S&P500 Index. The degree of freedom vs for student-t
distributions are all statistically significant in all the
models with the values approximately to 20. These results
are far from the expectation for v which is range from
three to six (Bollerslev 1987). With the high value of v,
one expects that the student-t distribution approximately
follows a normal distribution. These are evidenced from
the results in Table 1 where both different distribution
assumptions indicated similar estimation outcomes.
Next, the power transformation coefficient ds are close
to unity with values 1.040740 and 1.037535 in the DEG-
normal and DEG-t. Using t-test, the ds are both statistically
different from two but not from unity. These findings
implied that the representation of conditional standard
deviation is more suitable than conditional variance.
In short, the volatility representation is in favour of
Zakoian specification in this specific case. On the other
hand, the Js are fixed as one and two for Zakoian and
GJR model. The volatility persistent can be observed
from the coefficient 3,. It is found that the 3 s are less
persistence in GJR than DGE and Zakoian models in both
the normal and student-t assumptions. The summation
of a and f8 for the Bollerslev GARCH model normally
indicates the volatility persistence. However, this is not
exactly the same for the APARCH specification under the
additional asymmetric effect and power transformation in
the conditional volatility. The volatility persistence is less
intense when the power transformation increased from
1 to 2. These findings are similar to Ding et al. (1993)
where the absolute return exhibited longer memory than
the squared returns. In short, higher persistence implied
higher correlation between the current and historical
volatility. Some studies (Cheong et al. 2007; McMillan
& Thupayagale 2008) even included this measurement
as the predictability component which provided further
implication against the efficient market hypothesis
(Fama 1998). For leverage effect, the ys are positive
and statistically different from zero at 5% significant
level in all the models. This implied that downward
movements (shock) in the S&P500 market are followed
by greater volatilities than upward movements of the
same magnitude. Under the ordinary market condition,
this can be easily explained by using the leverage ratio
(similar to debt-equity ratio) (Black 1976) of an industry
where a crash in stock price can lead to an increase in
equity risk and thus triggered a more intense volatility.
An interesting finding is also noted from the S&P500
where there is a drastic reduction impact of leverage
effect when the power coefficient switched from unity
to two where DGE and Zakoian indicated vy closed to one
whereas GJR only indicated value close to 0.2000. In other
words, the news impact is less sensitive to the square of
shock (4;) than (a,).

FTSEI00. Similar analysis has been conducted on
the FTSE100. The vs (degree of freedom) for student-t
distributions are approximately equal to 16 which are
slightly heavier than S&P500. However, these results are
still far larger than the range three to six. Thus, Table 2
indicated similar results as S&P500 where the models with
both normal and student-t assumptions indicated similar
estimation outcomes. The power transformations based on
Os are less than unity with values 0.798110 and 0.894708
in the DEG-normal and DEG-t. Again the DEG volatility
representation is in favour of standard deviation. These
values are slightly lower than the S&P500 index. For
volatility persistence, ;s are slightly less persistence in
GIJR than DGE and Zakoian models in both the normal and
student-t assumptions. These results once again suggested
that the absolute conditional standard deviation is more
persistence as compared to conditional variance. The
news impact coefficient, ys are positive and implied the
presence of leverage effect. Similar results are observed
where the impact of leverage effect reduced when the
power coefficient switched from unity to two.

Opverall, both the markets suited better in the Zakoian
specification. However, the models based on student-t
and normal assumptions are almost identical based on the
information criteria due to the large value of degree of
freedom.

DIAGNOSTIC AND MODEL SELECTION

For S&P500, only the DGE and Zakoian models failed
to reject the null hypothesis of randomness under the
Ljung-Box serial correlation for standardized and
squared standardized residuals. However, the GJR model
indicated the presence of serial correlation in the squared
standardized residuals at 10% level of significance in both
normal and student-t assumptions. In other words, the
volatility representation in term of conditional variance
is statistically less suitable in the model specification.
In FTSE100, all the models successfully passed the
diagnostic tests. Tables 1 and 2 illustrate the results for
both markets.

Next, the model selection can be firstly seen from their
log likelihood functions (L,) in both the markets. Overall,
L, (in term of magnitude) decreased from DGE, Zakoian
and finally GJR models. Based on the L , the DGE models
are expected to outperform than other models. However,
DGE model has disadvantage over the information criteria
evaluation due to one additional estimated parameter as
compared to other two models. As a result, the Zakoian
model indicated the smallest information criteria for
AIC, SIC and HIC. This followed by DGE and finally GIR
models. On the other hand, the models based on student-t
assumption indicated slightly better information criteria
evaluations than normally distributed residual. In short, the
Zakoian student-t models are selected as the appropriate
models in both the markets for in-sample estimation. This
is followed by DGE student-t and finally the GIR student-t
models. However, the information criterion only indicated
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marginal improvement for DGE over Zakoian models. As
a summary, the conditional volatility representation and
also the distribution assumption played important roles
in determining the estimation performance under the
information criteria.

OUT-OF-SAMPLE FORECAST EVALUATIONS

Itis important to note that superiority in-sample estimation
does not guarantee similar out-of-sample forecasts. Due
to this, Ir|, rf and RV have been selected as the volatility
proxies to examine the one-step-ahead out-of-sample
forecasts for duration from Jan 2009 to May 2009 with
a total of 102 trading days. The out-of-sample forecast
evaluations have been divided into monthly, three months
and five months time horizon using MSE, RMSE and MAE.
Tables 3 and 4 present all the forecast evaluations where the
loss function for MSE indicated the largest values, followed
by RMSE and lastly the MAE in all the time horizons. These
findings evidenced similar argument by Andersen (1999)
where squared return (volatility proxy) is an unbiased
but less efficient estimator for the latent volatility. When
the square-root applied to MSE, the RMSE indicated the
reduction by the power of half. Lastly, the MAE indicated
smallest magnitude since the MSE is relatively more
sensitive to extreme value.

From Tables 3 and 4, it is quite obvious that the
selection of volatility proxy is an important step to
determine the forecast evaluation results. In general, the
DGE scored the lowest loss function results, followed by
the Zakoian model and finally the GIR models in time-
horizon of all the forecast evaluation. Again, superiority
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in-sample estimation does not always guarantee similar
out-of-sample forecasts. However, the scores for DEG
is slightly better than GJR models. From MSE, RMSE and
MAE, the realized volatility indicated smallest values
among others in all the time-horizons. Among the models
based on normal and student-t assumption, the forecast
performances are not consistent across the forecast
time-horizons and proxy selections. For example in both
S&P500 and FTSE100, the DGE-t of 20 one-step-ahead
forecasts using realized volatility is better than DGE-n,
whereas the opposite results are observed when changed
to other volatility proxies (absolute and square return).
For further evaluation, the Mincer-Zarnowitz regression
is applied on the forecasts and proxy volatility. As
expected, Tables 5 and 6 indicate that the R? for S&P500
and FTSE are approximately 0.40 and 0.20 among the
realized volatility and empirical forecasts. In other words,
approximately 40% and 20% of the forecasts in S&P500
and FTSE are able to explain the total variation in the
realized volatility. For proxies using absolute and square
returns, the same forecasts are managed to describe 1.5%
to 3.0% for both the S&P500 and FTSE100, respectively.
These findings are in concordance with Jorion (1996)
where the R? only managed to account for less than 5% in
most of the GARCH models. However, the poor results are
actually due to the absence of ‘actual’ volatility (Anderson
& Bollerslev 1998). When the realized volatility is
used, a drastic improvement is observed in the forecast
performance. As a result, the correct choice of volatility
proxy can strongly influence the forecast performance,
for this specific case the realized volatility with minutely
data for S&P500 and FTSE100. Figures 3 and 4 illustrate

TABLE 3. The S&P500 Out-of-sample forecasts

Volatility proxies MSE RMSE MAE

(1 month) Ir) r2 RV, r2 RV, Ir| r2 RV,
APGARCH-n 3.415782 5965312 1.323124  1.848183  2.442399 1.150271 1.538009 2.205951 0.843671
APARCH-t 3.847131 6.098737  1.272561 1.961411 2.469562 1.128079 1.649954 2221888  0.824917
Zakoian GARCH-n 3363442  5.944695  1.335174  1.833969 2.438174 1.155497 1.524788 2202501  0.845314
Zakoian GARCH-t 3.807993 6.080742  1.274935 1.951408 2.465916  1.12913 1.640926  2.218638  0.824737
GJR GARCH-n 3.825068  6.011325 1.397762  1.955778 24518 1.18227 1.640569  2.230233  0.870997
GJR GARCH-t 4448474  6.213525 1428514  2.109141 2.492694 1.195205 1.819188 2.247107 0.863794
(3 month) Ir| rl RV, rl RV, Ir) r} RV,
APGARCH-n 4.398195 12.79528  1.845387  2.097187 3.577049 1.35845 1.688539  2.833685  1.097882
APARCH-t 4.804143  12.79771 1.831918  2.191835 3.577388 1.353484 1.771467 2.847205 1.105915
Zakoian GARCH-n 4.323784  12.7943 1.851526  2.079371 3.576912 1.360708 1.674005 2.831524  1.097182
Zakoian GARCH-t 4.750514  12.79743  1.834903  2.179567  3.57735 1.354586  1.761276  2.845914  1.106221
GJR GARCH-n 5.370283  12.74821 1.910784 2.317387 3.570463 1.382311 1.897214  2.854729  1.119208
GJR GARCH-t 5.849683  12.76557  1.952537 2.418612 3.572894 1.397332 2.015819 2.870256  1.129545
(5 month) Ir r? RV, r} RV, Ir) r} RV,
APGARCH-n 3.016414  10.56699 1.3026 1.736783  3.250691 1.141315 1.323244 2.351183  0.855448
APARCH-t 3.282645 10.55269  1.289166  1.811807 3.248491 1.135415  1.38245  2.363584  0.86002
Zakoian GARCH-n 2971271 10.56572  1.306497  1.723738 3.250496  1.143021 1.314665 2.349511 0.855128
Zakoian GARCH-t 3.246844  10.55206  1.291605 1.8019 3.248394  1.136488 1.375023 2.361691  0.860288
GJR GARCH-n 3.675747 10.56141 1.341417 1917224 3.249832 1.158196 1.476027 2.387118 0.875671
GJR GARCH-t 3.975100 10.5531 1.361654  1.993765 3.248554 1.166899 1.551772 2.397888  0.879962
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TABLE 4. The FTSE Out-of-sample forecasts

Volatility proxies MSE RMSE MAE

(1 month) Irl r2 RV, r? RV, Ir r? RV,
APGARCH-n 7.02228  42.58578 0.845977  2.649959  6.525778  0.91977  2.268005 4.543754 0.698862
APARCH-t 6.475978 4221017 1.029500  2.544794  6.496935 1.014643 2.198906 4.481609 0.772714
Zakovian GARCH-n  6.969595  42.49303 0.967884  2.639999  6.518668 0.983811 2.274463 4.556744 0.756864
Zakovian GARCH-t ~ 7.324815 42.74687 0.814513  2.706439  6.538109  0.902504 2.312542 4.587298 0.685012
GJR GARCH-n 10.07743  43.91994 1.053146  3.174496  6.627212 1.026229 2.751085 4.871820 0.903082
GJR GARCH-t 10.58161  44.26231 0.992623  3.252938  6.652993  0.996304 2.814154 4915480 0.859020
(3 month) Ir r} RV, r} RV, Ir) r} RV,
APGARCH-n 9.342475  42.34543  2.702832  3.056546  6.507337  1.644029 2541236  4.523926 1.207859
APARCH-t 8.452437 4241869 2.375767 2907307  6.512963  1.541352 2.436632 4.496015 1.157084
Zakovian GARCH-n  8.835512 42,5128  2.439173 2972459  6.520184  1.561785 2.48995 4.525207 1.169497
Zakovian GARCH-t ~ 9.563777  42.39708 2.740579  3.092536  6.511304 1.65547 2.571458  4.540385 1.211343
GJR GARCH-n 11.11762  43.23149  2.958147 3.33431 6.575065  1.719926  2.815727 4.677997 1.339611
GJR GARCH-t 11.80213  43.18115 3.232554  3.435423  6.571236  1.79793  2.894782  4.696496 1.369139
(3 month) Ir r? RV, r? RV, Ir) r? RV,
APGARCH-n 6.616367 31.39332  2.691125 2.57223 5.602974  1.640465 2.032906  3.747266  1.159328
APARCH-t 6.093641 31.42818 2.450103 2.46853 5.606085 1.56528 1.980517 3.736334  1.113556
Zakovian GARCH-n  6.355489 31.4571 2.455324  2.521009  5.608663  1.566947  2.022223  3.759206 1.112608
Zakovian GARCH-t 6.76209 31.40833 2.697493  2.600402  5.604314  1.642405 2.055264  3.759524 1.157399
GJR GARCH-n 8.000593  31.75564 2.616511 2.828532  5.635214  1.617563  2.288569  3.883655 1.191599
GJR GARCH-t 8.346063  31.72286 2.822943  2.888955  5.632305 1.680162  2.314249 3.885762 1.217204

the conditional return and volatility forecasts for both the
S&P500 and FTSE100.

APPLICATION IN VALUE-AT-RISK

One of the immediate applications of estimated conditional
volatility is quantifying the market risk of a particular
financial market. For example, an investor is holding a long
trading position $1 million of a stock. His worst loss in
next day under normal market condition can be determined
using value-at-risk (Jorion 2001). The VaR is defined as
the worst loss for a given confidence level (for instance
95%) means one is 95% certain that at the end of a chosen
risk horizon (one day ahead for this specific study), there
will be no greater loss than VaR under normal market
conditions. In portfolio analysis, the VaR often acted as a
tool to alert investors for their possible expose risks under
a particular portfolio.

Consider the estimated values for S&P500 market using
DGE-normal at#=2767 (31 Dec 08) are r,, . =2.150185738
and 0®, = 3.103242565, respectively. Thus, the one-day-
ahead forecasts are 7, _(1)=0.48396979 and 6° (1) =
2.7090862. For lower tail 5% quantile, the value is 7, (1)+
Z, 005X 7 (1) =0.4839697 | | 1.6448536 x 2.7090862 =
-3.9722% (negative sign indicated the loss). The 95% VaR
for a position long of $1 million is $1million x 3.9722% =
$39722 with the condition the parameters in the model still
holds. In other words, with 95% confidence the potential
loss of holding this position in next day is $39722 or less.

Similarly, the lower 5% quantile using DGE-t can
be determined as ;2767(1)-’_ tu:0.0S,(V:20.93018) X62 22767(]) =
0.4951189 ||2.8856439 x 2.0859634 = -5.5242%. The
heavy-tail assumption increased the loss to $55242 as

compared to $39722 in the normal distribution model. It
is worth to note that the VaR is directly influenced by the
parametric distribution assumption. For this specific study
we use normal and student-t distribution. In other words,
the value of VaR is varied based on the behaviour of the
tail distribution time series.

CONCLUSION

This study investigated the importance of volatility
representation and choices of volatility proxy in forecast
evaluations. First, three volatility representations namely
the DGE, Zakoian and GJR specifications have been used in
order to obtain the most appropriate in-sample forecast for
the S&P500 and FTSE100 markets. Although the in-sample
forecasts (estimation) are in favour of Zakoian models
using three loss functions, the out-of-sample forecast on
the other hand indicated DGE models provided the lowest
forecast evaluation results. However, the improvement of
forecasts is in marginal form which implied that superiority
in-sample forecast does not always guarantee out-of-
sample forecasts.The second important issue in forecast is
the availability of actual observations. In this specific study,
the volatility proxies are absolute return, squared return
and high frequency realized volatility. Overall, when the
realized volatility acted as the unobserved latent volatility,
the out-of-sample forecasts indicated drastic improvement
in all the time horizons.

As a conclusion, an accurate model specification
must complement by the availability of ‘actual’ value in
forecast evaluations. For this specific study, a dynamic
conditional variance model evaluated using minutely
realized volatility.
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FIGURE 3. 5 months return forecast results for (a) S&P500 and (b) FTSE100
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FIGURE 4. Five months volatility forecast results for (a) S&P500 and (b) FTSE100
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