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Abstract

The accuracy of financial time series forecasts often rely on the model precision and the availability of actual observations 
for forecast evaluations. This study aimed to tackle these issues in order to obtain a suitable asymmetric time-varying 
volatility model that outperformed in the forecast evaluations based on interday and intraday data. The model precision 
was examined based on the most appropriate time-varying volatility representation under the autoregressive conditional 
heteroscedascity framework. For forecast precision, the evaluations were conducted under three loss functions using the 
volatility proxies and realized volatility. The empirical studies were implemented on two major financial markets and the 
estimated results are applied in quantifying their market risks. Empirical results indicated that Zakoian model provided 
the best in-sample forecasts whereas DGE on the other hand indicated better out-of-sample forecasts. For the type of 
volatility proxy selection, the implementation of intraday data in the latent volatility indicated significant improvement 
in all the time horizon forecasts.
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ABSTRAK

Ketepatan ramalan siri masa kewangan sering bergantung kepada ketepatan dan kewujudan cerapan sebenar dalam 
penilaian ramalan. Kajian ini bertujuan menangani isu-isu tersebut untuk mendapat model kemeruapan berubah masa 
asimetri yang dapat memberi prestasi yang baik berdasarkan data antara dan dalaman harian. Ketepatan model diperiksa 
berdasarkan pewakilan kemeruapan berubah masa paling sesuai dengan rangka kerja autoregresi heteroskedastisiti 
bersyarat. Untuk ketepatan peramalan, penilaian peramalan dijalankan berdasarkan tiga fungsi kerugian dengan proksi 
kemeruapan dan kemeruapan realisasi. Kajian empirik dilaksanakan pada dua pasaran saham utama dan keputusan 
penganggaran digunakan dalam mengkuantitikan risiko pasaran masing-masing. Keputusan empirik menunjukkan 
model asimetri Zakoian memberi keputusan penilaian peramalan dalam sampel yang terbaik manakala model DGE pula 
menandakan peramalan luar sampel yang paling tepat. Untuk pemilihan proksi kemeruapan, penggunaan data dalaman 
harian sebagai kemeruapan sebenar menunjukkan pembaikan yang signifikan dalam peramalan semua ufuk masa.

Kata kunci: Kemeruapan dinamik; kemeruapan realisasi; model ARCH; risiko pasaran

INTRODUCTION

In financial time series analysis, volatility forecast is 
an important topic due to its influential impact in asset 
pricing modelling, portfolio investment decision as well 
as risk management development. The introduction 
of autoregressive conditional heteroscedastic(ARCH) 
models has successfully captured the clustering volatility 
especially during the high volatility period in worldwide 
financial markets. The early volatility representations are 
dominant by Bollerslev (1986) and Taylor (1986) families 
of ARCH models. The former family suggested the shocks 
to variance persist in the form of squared residuals whereas 
the latter family proposed the shocks in term of absolute 
residual. 
	 In the further development of ARCH model, Nelson’s 
(1991) later proposed an exponential ARCH to capture 

the asymmetric news impact (Black 1976) in the return 
volatility. Sometimes this impact is known as leverage 
effect where the market volatility tended to rise more in 
response to bad news as compared to the released of good 
news. This important stylized fact has been extended in 
Bollerslev’s framework by Glosten et al. (1993) (GJR 
henceforth) using a dummy variable to capture the 
impact of bad news. On the other hand, Zakoian (1990) 
introduced this asymmetric effect using the Taylor’s 
specification. However, both of these specifications 
have fixed the volatility representation based on the 
Gaussian assumption where the expected square return 
is approximated to variance and the expected absolute 
return is estimated to the standard deviation. Since the 
worldwide financial markets are deviated from normal 
distribution with kurtosis exceeded three and non-zero 
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skewness, the aforementioned assumption might not be 
suitable anymore. Knowing the presence of other potential 
power form of volatility, Ding, Granger and Engle (DGE 
henceforth) suggested the asymmetric power ARCH (Ding 
et al. 1993) with flexible power transformation. This 
model endogenously estimated the power transformation 
rather than fixed arbitrarily in GJR and Zakoian models. 
	 Besides the correct model specification, the 
availability of ‘actual’ volatility is also an important 
factor to ensure good forecast performance. In most of 
the studies, the unobservable actual volatilities often 
represented by proxies such as square return or absolute 
return based on the interday data. Consequently, some 
studies (Jorion 1996; Schwet 1990) reported that the 
forecast using GARCH model only managed to explain 
less than 5% to the proxy volatility. The absence of good 
approximation of actual volatility is the main reason for 
the poor forecast results. With the fast growing of data 
base system in financial markets, the high frequency 
data (intraday data) become available in most of the 
major financial markets. With the high frequency data 
(minutely), it is possible to obtain a better approximation 
of actual volatility. Anderson and Bollerslev (1998) 
pointed out a better estimation of realized daily volatility 
can be obtained by summing the 288 5 min squared 
intraday returns for the 24 h foreign exchange market. 
This approach is the approximation of a continuous time 
diffusion process for most of the financial asset prices 
time series. In addition, it is noted by Ebens (1999) 
and Anderson et al. (1999) that the squared return is an 
unbiased estimator but at the same time, a noisy estimator. 
In the stock market, the intraday returns are obtained by 
summing the trading hours with the absence of overnight 
trading. Further information of realized volatility can 
be obtained from Andersen et al. (2001) and Barndorff-
Nielsen and Shephard (2002).
	T he preceding discussions thus provided that the 
factors underlying the role of superior forecast performance 
are correct model specification and good estimators of 
actual volatility. This is an interesting research issue 
and it is worth exploring on how the DGE, GJR and 
Zakoian compete in the model specification and forecast 
performance. In order to do so, this paper attempted 
to address these issues in two major financial markets, 
the S&P500 and the FTSE100. The model selections are 
based on Akiake, Schwert and Hannan-Quinn information 
criteria. In order to avoid biasness, both the interday and 
intraday proxies are used in the forecast evaluations. 
	 This paper is organized as follows: the next section 
describes the data source in term of inter- and intra-day. This 
is followed by a discussion on the model specifications, 
estimation, diagnostic and forecast evaluation. This 
followed by a presentation on the empirical results and 
application of the estimated results. The last section 
contains the conclusion of this study. 

DATA SOURCE

The empirical data are obtained from two major global 
stock markets, the S&P500 and FTSE100. The S&P500 
is a free-float capitalization-weighted index introduced 
in year 1957 which traded under the NYSE Euronext and 
NASDAQ OMX. The S&P Index committees selected the 
500 active large-cap common stocks that represented the 
industries in the United States economy. FTSE100 index 
was established in year 1984 with 100 most wealthy 
companies listed on the London Stock Exchange (LSE). 
These companies contributed approximately 80% of the 
market capitalization of the LSE. The empirical indices  
started from January 1998 until December 2008 with a 
total of 2767 and 2777 observations for S&P500 and 
FTSE100, respectively. A total of five months daily trading 
data (102 observations for both markets) are reserved for 
forecast evaluations. The most common financial data are 
based on the interday closing prices where daily returns 
are subsequently calculated. The percentage continuously 
compounded interday return is defined as 

	 Rt = 100(ln Pt – ln Pt – 1).	 (1)

REALIZED VOLATILITY 

The rapid development of recent information and 
communication technology (ICT) has promoted the use 
of high frequency data to facilitate a more accurate 
estimation and forecasting analysis. This referred to 
intraday data with N observations in one day which are 
normally recorded in the interval of multiple minute. 
The percentage of continuously compounded return is 
defined as:
 								      
	 Rt, a = 100(ln Pt, a –  1),	 (2)

where a = 1, …, N and t = 1, …, T. In other words, each 
day (t) consists of N recorded trading activities. For this 
study, the durations for trading hours are from 9:30 to 16:00 
(S&P500) and 8:00 to 16:30 (FTSE100) with NS&P500=390 
and NFTSE100=510, respectively. These time series are 
assumed to have E[Rt, a] = 0, [Rr, p Rs,q] = 0 and finite 

. For model-free proxy of volatility, the daily 
squared compounded returns are:

 
	 	 (3)

	 The second term indicated the autocovariances which 
acted as the noise component in the realized volatility. 
This item vanishes if [Rr, p Rs,q] = 0 and reduced 
to which is an unbiased estimator 
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(Anderson et al. 1999) of the daily population variance or 
latent volatility. The variance of realized volatility can be 
expressed as:

	  
,

	 (4)

under the normality assumption where N(0, /N),  
 which indicated that the variance of realized 

volatility reduced at the rate of N. 

METHODs

Let Rt be a general univariate asset return which is serially 
uncorrelated but dependent in the ARCH specification. 
For a given information set It-1 available at time t−1, the 
conditional mean of rt is defined as: 

	 E(rt⎜It–1) = Et–1(rt) = μt,	 (5)
				  
with the innovation process at = rt – μt with the conditional 
variance Var(rt⎜It–1) = Vart–1( ) = . In financial time 
series, the conditional mean often captured by a stationary 
ARMA(m,n) model under the non-vector form:
	
 	 μt = φ0 + 	 (6)
				  
	 An ARCH model is also frequently represented by a 
regression model in the form of rt = xt́β + at where xt́ is a 
column vector. The corresponding unconditional variance 
can be expressed as Var(at(θ)) = E(at

2(θ)) = σt
2(θ) where 

E(at) = 0 and E(akah) = 0 for all k≠h. Further, the conditional 
variance begun with the relationship at = σtzt where for 
standardized process of zt, E(zt⎜It–1) = 0 and Var(zt⎜It–1) 
= 1 for all t. Now, consider an asymmetric power DGE 
GARCH(1,1) model with the following specifications:
	
	 σt

δ = α0 + α1[kγ(at–1)
δ + β1 ,	 (7)

where kγ(at–1) = ⎜at–1⎜ – γat–1 and δ is the flexible volatility 
transformation parameter. Specifically, when the conditional 
volatility representation restricted to δ = 1 (conditional 
standard deviation) and δ = 2 (conditional variance), the 
model changed to Zakovian and GJR models with leverage 
effect (dummy variable) as follows:

	 GJR:	   = α0 + α1  + γdt–1 β1 .	 (8)
	
	 Zakoian: 	σt = α0 + α1at–1 + γdt–1at–1β1σt–1,	 (9)

where dt–1 =  It is worth noting that the GJR 
asymmetric coefficient initiated with positive sign whereas 
DGE and Zakoian started with negative sign. This is to make 
sure that the interpretation of news impact is consistent 
across the models. For example, γ>0 indicated the presence 
of leverage effect with additional impact (γ) as compared 
to good news. From the economic point of view, the 
leverage effect can be explained based on the debt-equity 
ratio. Market equity values often determined by the stock 
price where a drop in stock price would increased the ratio 
and consequently increased the risk from the investor 
perspectives. Thus negative news has a deeper impact to 
future volatility than positive news.

MAXIMUM LIKELIHOOD ESTIMATION

In the maximum likelihood estimation (MLE), zt normally 
follows parametric distribution such as normal, student-t 
and generalized error distribution. Under the assumption 
of standardized zt ~ N(0,1), the log-likelihood function with 
density function is given as: 

	
	
	 LT(η) = (η) = ln fa(a1) 
	
	 +  
	 (10)

where η = (α0, α1, β1, γ, δ) represents the vector of 
unknown parameter for conditional dispersion equation 
all set at time t. For large sample size, the unknown 
marginal density log fa(a1) can be ignored under the 
following derivation:

	 LT(η) =  f(aT, …, a2⎜a1) =  f(at⎜Ωt–1).
	 (11)

		
	 Apart from the constants, lt(η) =  
Differentiating with respect to the vector parameter 
yields:

	 	 (12)
		

	 However, the DGE model is computed under the 
representation of , therefore the additional separated 
analytical derivatives for conditional dispersion are 

	  and	

	 	  		
(13)
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where θ = (α0, α1, β1, γ). The vector gradients with respect 
to the conditional dispersion parameter can be obtained in 
the following equations:

	 	

	 	

	 	 (14)

	 A more comprehensive analytic derivatives of DGE 
APARCH(p,q) can be found in Laurent (2004) and He 
and Terasvirta (1997). In this study, the Gaussian Quasi 
Maximum Likelihood (Bollerslev & Wooldridge 1992) 
method is used to provide consistent (at least) estimation 
under the correct specification as stated earlier even 
under the non-normal condition of zt. For faster and easier 
computation, we have selected the Marquardt (1963) 
method where only the outer products of the gradient 
vectors are computed in the iterative estimations:

	 	 (15)

where cl is a constant diagonal matrix. This correction 
matrix provided better maximum location identification 
by following the direction of the gradient vector. Under 
the regularity conditions of quasi maximum likelihood 
estimation (QMLE), the large number samples asymptotically 
normally distributed    following the property: 

	 	 (16)
	

where   

and 

	
	T he QMLE become ordinary MLE if the zt is truly 
normally distributed where the J-1IJ-1 reduced to J-1 which 
is  under the asymptotic property 
of MLE. 
	 However, the non-normality (fat-tail property) of 
financial time series is often observed in the worldwide 
financial markets. Although normality assumption 
ML estimator may fulfil the consistency condition, the 
departure from normality on the other hand can cause 
inefficient issue in the estimations. Thus, to circumvent the 
leptokurtosis ARCH issue, Bollerslev (1987) introduced the 
heavy tail standardized student-t with degree of freedom 
exceeded 2 in the univariate time series. The student-t 
distribution (υ) can be written as	

	

	 f(zt;υ|Ωt-1) = 
 		  (17)

	 The associated log-likelihood function can be 
expressed as:

	 	 (18)

DIAGNOSTIC AND MODEL SELECTION

For model diagnostic, the Ljung-Box serial correlation and 
Engle ARCH tests are used to examine the standardized and 
squared standardized residuals under the null hypothesis 
that the noise terms are serially uncorrelated or random. 
Model selections are based on the Akaike information 
criterion (AIC), Schwert information criterion (SIC) and 
Hannan-Quinn information criterion (HIC) which evaluated 
from the adjusted (penalty function due to additional 
number estimated parameters) average log likelihood 
function (LT) are selected for the estimation evaluation. 
The information criteria can be expressed as:
 
	 AIC	 = 

	 SIC	 = 

	 HIC  = 		 (19)

where k is the number of estimated parameters. 

FORECAST EVALUATION

For out-of-sample one-day-ahead forecasts, each volatility 
model is estimated H times based on fix period of T 
observations. In forecast evaluations, the mean square error 
(MSE), the root mean square error (RMSE) and the mean 
absolute (MAE) are calculated as follows: 

	 MSE	 = 	
 

	 RMSE	 = 	  

	
	 MAE 	 =  ;	 (20)

where the actual and forecast represented three forms of 
volatility proxies with |rt|,  and minutely realized volatility 
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to avoid the possible biasness in the forecast evaluations. 
Finally, the Mincer-Zarnowitz(1969) regression is used to 
further evaluate the relationship between the forecast and 
actual (proxy) based on the coefficient of determination, 
R2 as follow: 

	 	 (21)

	 Conditioning upon the forecast, the forecast is 
unbiased and optimal only if λ0 = 0 and λ1 = 1 knowing that 
the conditional mean is zero. The determinant coefficient, 
R2 indicated the power of predictability of the selected 
models with  and . More specifically, the R2 
expressed the proportion (percentage) of the total variation 
in the actual values that can be accounted for a linear 
relationship with the forecast value. 

EMPIRICAL RESULTS

In order to examine the presence of fat-tailed property, 
quantile-quantile plots are conducted for S&P500 and 
FTSE100. Figures 1 and 2 indicate both the indices deviated 
from a normal distribution (heavier at both tails), however, 
fitted better after replacing by a student-t distribution. In 
other words, a heavy-tail distribution should be considered 
in the model specification. For conditional mean equation 
analysis, a moving average MA(1) model is capable of 
adjusting the serial correlation in the S&P500 while an 
ARMA(1,1) is needed for FTSE100. According to Miller et al. 
(1994), similar correction can be done using autoregressive 
model. 

FIGURE 1.Quantile-quantile plots for S&P500

FIGURE 2.Quantile-quantile plots for FTSE100
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ESTIMATION RESULT

For conditional volatility, the coefficients that directly 
governed the behaviour of the dynamic volatility modelling 
can be elaborated as follows:

S&P500 Index.   The degree of freedom vs for student-t 
distributions are all statistically significant in all the 
models with the values approximately to 20. These results 
are far from the expectation for v which is range from 
three to six (Bollerslev 1987). With the high value of v, 
one expects that the student-t distribution approximately 
follows a normal distribution. These are evidenced from 
the results in Table 1 where both different distribution 
assumptions indicated similar estimation outcomes. 
Next, the power transformation coefficient δs are close 
to unity with values 1.040740 and 1.037535 in the DEG-
normal and DEG-t. Using t-test, the δs are both statistically 
different from two but not from unity. These findings 
implied that the representation of conditional standard 
deviation is more suitable than conditional variance. 
In short, the volatility representation is in favour of 
Zakoian specification in this specific case. On the other 
hand, the δs are fixed as one and two for Zakoian and 
GJR model. The volatility persistent can be observed 
from the coefficient β1. It is found that the β1s are less 
persistence in GJR than DGE and Zakoian models in both 
the normal and student-t assumptions. The summation 
of α and β for the Bollerslev GARCH model normally 
indicates the volatility persistence. However, this is not 
exactly the same for the APARCH specification under the 
additional asymmetric effect and power transformation in 
the conditional volatility.The volatility persistence is less 
intense when the power transformation increased from 
1 to 2. These findings are similar to Ding et al. (1993) 
where the absolute return exhibited longer memory than 
the squared returns. In short, higher persistence implied 
higher correlation between the current and historical 
volatility. Some studies (Cheong et al. 2007; McMillan 
& Thupayagale 2008) even included this measurement 
as the predictability component which provided further 
implication against the efficient market hypothesis 
(Fama 1998). For leverage effect, the γs are positive 
and statistically different from zero at 5% significant 
level in all the models. This implied that downward 
movements (shock) in the S&P500 market are followed 
by greater volatilities than upward movements of the 
same magnitude. Under the ordinary market condition, 
this can be easily explained by using the leverage ratio 
(similar to debt-equity ratio) (Black 1976) of an industry 
where a crash in stock price can lead to an increase in 
equity risk and thus triggered a more intense volatility. 
An interesting finding is also noted from the S&P500 
where there is a drastic reduction impact of leverage 
effect when the power coefficient switched from unity 
to two where DGE and Zakoian indicated γ closed to one 
whereas GJR only indicated value close to 0.2000. In other 
words, the news impact is less sensitive to the square of 
shock ( ) than (at).

FTSE100.   Similar analysis has been conducted on 
the FTSE100. The vs (degree of freedom) for student-t 
distributions are approximately equal to 16 which are 
slightly heavier than S&P500. However, these results are 
still far larger than the range three to six. Thus, Table 2 
indicated similar results as S&P500 where the models with 
both normal and student-t assumptions indicated similar 
estimation outcomes. The power transformations based on 
δs are less than unity with values 0.798110 and 0.894708 
in the DEG-normal and DEG-t. Again the DEG volatility 
representation is in favour of standard deviation. These 
values are slightly lower than the S&P500 index. For 
volatility persistence, β1s are slightly less persistence in 
GJR than DGE and Zakoian models in both the normal and 
student-t assumptions. These results once again suggested 
that the absolute conditional standard deviation is more 
persistence as compared to conditional variance. The 
news impact coefficient, γs are positive and implied the 
presence of leverage effect. Similar results are observed 
where the impact of leverage effect reduced when the 
power coefficient switched from unity to two. 
	 Overall, both the markets suited better in the Zakoian 
specification. However, the models based on student-t 
and normal assumptions are almost identical based on the 
information criteria due to the large value of degree of 
freedom. 

DIAGNOSTIC AND MODEL SELECTION

For S&P500, only the DGE and Zakoian models failed 
to reject the null hypothesis of randomness under the 
Ljung-Box serial correlation for standardized and 
squared standardized residuals. However, the GJR model 
indicated the presence of serial correlation in the squared 
standardized residuals at 10% level of significance in both 
normal and student-t assumptions. In other words, the 
volatility representation in term of conditional variance 
is statistically less suitable in the model specification. 
In FTSE100, all the models successfully passed the 
diagnostic tests. Tables 1 and 2 illustrate the results for 
both markets. 
	 Next, the model selection can be firstly seen from their 
log likelihood functions (LT) in both the markets. Overall, 
LT (in term of magnitude) decreased from DGE, Zakoian 
and finally GJR models. Based on the LT, the DGE models 
are expected to outperform than other models. However, 
DGE model has disadvantage over the information criteria 
evaluation due to one additional estimated parameter as 
compared to other two models. As a result, the Zakoian 
model indicated the smallest information criteria for 
AIC, SIC and HIC. This followed by DGE and finally GJR 
models. On the other hand, the models based on student-t 
assumption indicated slightly better information criteria 
evaluations than normally distributed residual. In short, the 
Zakoian student-t models are selected as the appropriate 
models in both the markets for in-sample estimation. This 
is followed by DGE student-t and finally the GJR student-t 
models. However, the information criterion only indicated 
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marginal improvement for DGE over Zakoian models. As 
a summary, the conditional volatility representation and 
also the distribution assumption played important roles 
in determining the estimation performance under the 
information criteria. 

OUT-OF-SAMPLE FORECAST EVALUATIONS

It is important to note that superiority in-sample estimation 
does not guarantee similar out-of-sample forecasts. Due 
to this, |rt|, rt

2 and RV have been selected as the volatility 
proxies to examine the one-step-ahead out-of-sample 
forecasts for duration from Jan 2009 to May 2009 with 
a total of 102 trading days. The out-of-sample forecast 
evaluations have been divided into monthly, three months 
and five months time horizon using MSE, RMSE and MAE. 
Tables 3 and 4 present all the forecast evaluations where the 
loss function for MSE indicated the largest values, followed 
by RMSE and lastly the MAE in all the time horizons. These 
findings evidenced similar argument by Andersen (1999) 
where squared return (volatility proxy) is an unbiased 
but less efficient estimator for the latent volatility. When 
the square-root applied to MSE, the RMSE indicated the 
reduction by the power of half. Lastly, the MAE indicated 
smallest magnitude since the MSE is relatively more 
sensitive to extreme value. 
	 From Tables 3 and 4, it is quite obvious that the 
selection of volatility proxy is an important step to 
determine the forecast evaluation results. In general, the 
DGE scored the lowest loss function results, followed by 
the Zakoian model and finally the GJR models in time-
horizon of all the forecast evaluation. Again, superiority 

in-sample estimation does not always guarantee similar 
out-of-sample forecasts. However, the scores for DEG 
is slightly better than GJR models. From MSE, RMSE and 
MAE, the realized volatility indicated smallest values 
among others in all the time-horizons. Among the models 
based on normal and student-t assumption, the forecast 
performances are not consistent across the forecast 
time-horizons and proxy selections. For example in both 
S&P500 and FTSE100, the DGE-t of 20 one-step-ahead 
forecasts using realized volatility is better than DGE-n, 
whereas the opposite results are observed when changed 
to other volatility proxies (absolute and square return). 
For further evaluation, the Mincer-Zarnowitz regression 
is applied on the forecasts and proxy volatility. As 
expected, Tables 5 and 6 indicate that the R2 for S&P500 
and FTSE are approximately 0.40 and 0.20 among the 
realized volatility and empirical forecasts. In other words, 
approximately 40% and 20% of the forecasts in S&P500 
and FTSE are able to explain the total variation in the 
realized volatility. For proxies using absolute and square 
returns, the same forecasts are managed to describe 1.5% 
to 3.0% for both the S&P500 and FTSE100, respectively. 
These findings are in concordance with Jorion (1996) 
where the R2 only managed to account for less than 5% in 
most of the GARCH models. However, the poor results are 
actually due to the absence of ‘actual’ volatility (Anderson 
& Bollerslev 1998). When the realized volatility is 
used, a drastic improvement is observed in the forecast 
performance. As a result, the correct choice of volatility 
proxy can strongly influence the forecast performance, 
for this specific case the realized volatility with minutely 
data for S&P500 and FTSE100. Figures 3 and 4 illustrate 

Table 3. The S&P500 Out-of-sample forecasts

Volatility proxies 
 (1 month)

MSE RMSE MAE

|rt| rt
2 RVt |rt| rt

2 RVt |rt| rt
2 RVt

APGARCH-n
APARCH-t
Zakoian GARCH-n
Zakoian GARCH-t
GJR  GARCH-n
GJR GARCH-t
 (3 month)

3.415782
3.847131
3.363442
3.807993
3.825068
4.448474

|rt|

5.965312
6.098737
5.944695
6.080742
6.011325
6.213525

rt
2

1.323124
1.272561
1.335174
1.274935
1.397762
1.428514

RVt

1.848183
1.961411
1.833969
1.951408
1.955778
2.109141

|rt|

2.442399
2.469562
2.438174
2.465916
2.4518

2.492694
rt

2

1.150271
1.128079
1.155497
1.12913
1.18227
1.195205

RVt

1.538009
1.649954
1.524788
1.640926
1.640569
1.819188

|rt|

2.205951
2.221888
2.202501
2.218638
2.230233
2.247107

rt
2

0.843671
0.824917
0.845314
0.824737
0.870997
0.863794

RVt

APGARCH-n
APARCH-t
Zakoian GARCH-n
Zakoian GARCH-t
GJR  GARCH-n
GJR GARCH-t
 (5 month)

4.398195
4.804143
4.323784
4.750514
5.370283
5.849683

|rt|

12.79528
12.79771
12.7943
12.79743
12.74821
12.76557

rt
2

1.845387
1.831918
1.851526
1.834903
1.910784
1.952537

RVt

2.097187
2.191835
2.079371
2.179567
2.317387
2.418612

|rt|

3.577049
3.577388
3.576912
3.57735
3.570463
3.572894

rt
2

1.35845
1.353484
1.360708
1.354586
1.382311
1.397332

RVt

1.688539
1.771467
1.674005
1.761276
1.897214
2.015819

|rt|

2.833685
2.847205
2.831524
2.845914
2.854729
2.870256

rt
2

1.097882
1.105915
1.097182
1.106221
1.119208
1.129545

RVt

APGARCH-n
APARCH-t
Zakoian GARCH-n
Zakoian GARCH-t
GJR  GARCH-n
GJR GARCH-t

3.016414
3.282645
2.971271
3.246844
3.675747
3.975100

10.56699
10.55269
10.56572
10.55206
10.56141
10.5531

1.3026
1.289166
1.306497
1.291605
1.341417
1.361654

1.736783
1.811807
1.723738
1.8019

1.917224
1.993765

3.250691
3.248491
3.250496
3.248394
3.249832
3.248554

1.141315
1.135415
1.143021
1.136488
1.158196
1.166899

1.323244
1.38245
1.314665
1.375023
1.476027
1.551772

2.351183
2.363584
2.349511
2.361691
2.387118
2.397888

0.855448
0.86002
0.855128
0.860288
0.875671
0.879962
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Table 4. The FTSE Out-of-sample forecasts

Volatility proxies 
 (1 month)

MSE RMSE MAE

|rt| rt
2 RVt |rt| rt

2 RVt |rt| rt
2 RVt

APGARCH-n
APARCH-t
Zakovian GARCH-n
Zakovian GARCH-t
GJR  GARCH-n
GJR GARCH-t
 (3 month)

7.02228
6.475978
6.969595
7.324815
10.07743
10.58161

|rt|

42.58578
42.21017
42.49303
42.74687
43.91994
44.26231

rt
2

0.845977
1.029500
0.967884
0.814513
1.053146
0.992623

RVt

2.649959
2.544794
2.639999
2.706439
3.174496
3.252938

|rt|

6.525778
6.496935
6.518668
6.538109
6.627212
6.652993

rt
2

0.91977
1.014643
0.983811
0.902504
1.026229
0.996304

RVt

2.268005
2.198906
2.274463
2.312542
2.751085
2.814154

|rt|

4.543754
4.481609
4.556744
4.587298
4.871820
4.915480

rt
2

0.698862
0.772714
0.756864
0.685012
0.903082
0.859020

RVt

APGARCH-n
APARCH-t
Zakovian GARCH-n
Zakovian GARCH-t
GJR  GARCH-n
GJR GARCH-t
 (3 month)

9.342475
8.452437
8.835512
9.563777
11.11762
11.80213

|rt|

42.34543
42.41869
42.5128
42.39708
43.23149
43.18115

rt
2

2.702832
2.375767
2.439173
2.740579
2.958147
3.232554

RVt

3.056546
2.907307
2.972459
3.092536
3.33431
3.435423

|rt|

6.507337
6.512963
6.520184
6.511304
6.575065
6.571236

rt
2

1.644029
1.541352
1.561785
1.65547
1.719926
1.79793

RVt

2.541236
2.436632
2.48995
2.571458
2.815727
2.894782

|rt|

4.523926
4.496015
4.525207
4.540385
4.677997
4.696496

rt
2

1.207859
1.157084
1.169497
1.211343
1.339611
1.369139

RVt

APGARCH-n
APARCH-t
Zakovian GARCH-n
Zakovian GARCH-t
GJR  GARCH-n
GJR GARCH-t

6.616367
6.093641
6.355489
6.76209
8.000593
8.346063

31.39332
31.42818
31.4571
31.40833
31.75564
31.72286

2.691125
2.450103
2.455324
2.697493
2.616511
2.822943

2.57223
2.46853
2.521009
2.600402
2.828532
2.888955

5.602974
5.606085
5.608663
5.604314
5.635214
5.632305

1.640465
1.56528
1.566947
1.642405
1.617563
1.680162

2.032906
1.980517
2.022223
2.055264
2.288569
2.314249

3.747266
3.736334
3.759206
3.759524
3.883655
3.885762

1.159328
1.113556
1.112608
1.157399
1.191599
1.217204

the conditional return and volatility forecasts for both the 
S&P500 and FTSE100. 

APPLICATION IN VALUE-AT-RISK

One of the immediate applications of estimated conditional 
volatility is quantifying the market risk of a particular 
financial market. For example, an investor is holding a long 
trading position $1 million of a stock. His worst loss in 
next day under normal market condition can be determined 
using value-at-risk (Jorion 2001). The VaR is defined as 
the worst loss for a given confidence level (for instance 
95%) means one is 95% certain that at the end of a chosen 
risk horizon (one day ahead for this specific study), there 
will be no greater loss than VaR under normal market 
conditions. In portfolio analysis, the VaR often acted as a 
tool to alert investors for their possible expose risks under 
a particular portfolio. 
	 Consider the estimated values for S&P500 market using 
DGE-normal at t = 2767 (31 Dec 08) are  r2767 = 2.150185738 
and σ2

2767 = 3.103242565, respectively. Thus, the one-day-
ahead forecasts are 2767(1)= 0.48396979 and 22767(1) = 
2.7090862. For lower tail 5% quantile, the value is 2767(1)+ 
zα=0.05 × 22767(1) = 0.4839697 ⎢⎢ 1.6448536 × 2.7090862 = 
-3.9722% (negative sign indicated the loss). The 95% VaR 
for a position long of $1 million is $1million × 3.9722% = 
$39722 with the condition the parameters in the model still 
holds. In other words, with 95% confidence the potential 
loss of holding this position in next day is $39722 or less. 
	 Similarly, the lower 5% quantile using DGE-t can 
be determined as 2767(1)+ tα=0.05,(v=20.93018) × 22767(1) = 
0.4951189 ⎢⎢2.8856439 × 2.0859634 = -5.5242%. The 
heavy-tail assumption increased the loss to $55242 as 

compared to $39722 in the normal distribution model. It 
is worth to note that the VaR is directly influenced by the 
parametric distribution assumption. For this specific study 
we use normal and student-t distribution. In other words, 
the value of VaR is varied based on the behaviour of the 
tail distribution time series.

CONCLUSION

This study investigated the importance of volatility 
representation and choices of volatility proxy in forecast 
evaluations. First, three volatility representations namely 
the DGE, Zakoian and GJR specifications have been used in 
order to obtain the most appropriate in-sample forecast for 
the S&P500 and FTSE100 markets. Although the in-sample 
forecasts (estimation) are in favour of Zakoian models 
using three loss functions, the out-of-sample forecast on 
the other hand indicated DGE models provided the lowest 
forecast evaluation results. However, the improvement of 
forecasts is in marginal form which implied that superiority 
in-sample forecast does not always guarantee out-of-
sample forecasts.The second important issue in forecast is 
the availability of actual observations. In this specific study, 
the volatility proxies are absolute return, squared return 
and high frequency realized volatility. Overall, when the 
realized volatility acted as the unobserved latent volatility, 
the out-of-sample forecasts indicated drastic improvement 
in all the time horizons. 
	 As a conclusion, an accurate model specification 
must complement by the availability of ‘actual’ value in 
forecast evaluations. For this specific study, a dynamic 
conditional variance model evaluated using minutely 
realized volatility. 
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